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/Following is a translation of an article by Yu. I.
Kadashevich and A. K. Pertsev in the Russian language
veriodical Igzvestute Akademii Namlk SSSR, O¥N,
Melthanika i Meshinostroyeniye (News of tae Acadeny
of Sciences of the USSR, Division of Teshnical
Sciences; Meghanics and Machine Building), Moscow,
Pages 30-33,/ | :

In contrast to statistical studies, the analysis of the
loss of stability of cylinders in dynamics has the characteristic
peculiarity that it is not the determination of the moment of the
beginning of stgbility‘lo%s but the study of the magnitude of the
Tlexure [progid/ in the process-of loading which acquires decisive
significance,

, In an engineering sense, the critical load is taken as that
in which the flexures of the loss of stability begin to increase
vigorously or reach dsngerous proportions. The motion of & cylinder
is studied on the assumption that it has a beginning flexure which
coincides in form with the flexure of stability loss. ’

Such an approach to a determination of critical loads -
applicable to rods was developed in the works of N. Khoff /1 /.
It was first applied to shells by A, S. Volimir who studied the
stability of a cylindrical panel during longitudinal compression

2_/« A study by V. V. Bolotin and others ZTB_/ was also devoted
to this problems The loss of stability of a cylindrical shell during
loading on all sides which increased linearly over time was
examined in an article by V. L. Agamirn and A. S. Vollmir 174;70 .

The effect of an eyually-distributed transverse dynamic
load is studied below. Unlike study lm4;7, we consgider not only
the inertness of the formation of indentations of the stability
loss but also the inertness of axially symmetric compression of
ths shell. This permits the use of the system of equations of the
motsion of the shell, which was oblained, for cases of more rapid
loading than is permitted by the system of equations presented in
study'zfj%g7. , ‘ ‘

Let us considsr an infinitely long cylindrical shell, supported
by egui~distant lateral ribs, absolutely inflexible to bending but
not resisting compression, loaded with a transverse dynamic load.



In this csse the loss of stability will take place only between the
ribs. We shall not consider the mass of the ribs during thé motion
of the shell, Ve shall confine ourselves to the case where the
distancs between the ribs is such that during the stability loss
on the perimeter of the shell, a large number of waves (n »5) is
formed, Then for the study we can use the non-linear theory of
flattened /pologikh/ shells.

For an approximation of the flexure of a shell during the
loss of stzbility, we shall take advantage of the expressions: .

W= fo+ fqein o xsin fy+ o sin® o x (v o=o, f==) (1)
‘ : ) : . L R

Here L == the distance between the ribs; R -~ radius of the
shell; n «- the number of waves of stability losss X, y == the
coordinates, read along the generatrix and the directrix.

Expression (1) has been used by many authors to study the
statistical loss of stability of cylindrical snells. In article

[0/ it is spplied to a dynamic problem. :

We shall assume that the shell has an initial flexure

coinzciding in form with the flexure during stability losss

wo = 1410 sin of x sin Sy + £20 sin ""’,"7“‘ X . : (2)

We shall avail ourselves of the . La range equation of the
second order Z;bd@/ to form the equatlons of motions

sax_geyioe

Here K == kinetic energy of the shell; 7% == full potential
energy; p; == the generalized coordinate; t -- time.

We Shall take the parameters of flexure fy, f, and fO as
generalized coordinates, '

Since the tangential dlsplacements are small in comparison
with normal displacements for a large number of waves, we shall , &
define the kinetic energy of the motion of the shell by the
formulas : ‘ : :

?ff?wg dxéy L ()




Here / == the density of the material of the Su@‘ll,
h == the thickness of the shell.

The full potential energy consists of the ene"r‘gy of flexure
of the shell, the energy of deformation of the middle surface and
the work of external fcrces in a given cass of transverse pressure.
We shall determine these mag,:gitqges by the familizr formula of the
theory of flattened shells / 5 /.

The magnitude of +the average arnular stress is described by
the parameters of flexure with the aid of the equation of the
closed conditicn of the shell

2".;1R .
J :‘t:";, dy = 0 . (5)
; |

(vwhere v == the tangential dis p'lacement of points of the middle
surface of the shell) and is eliminated from the expression for
the potential energy of the shell,

The equations of the motion of & shell in dimensionless
magnitudes have the form
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in which ¢ ( “) -- the transverse load; v -~ speed of the pro=
pagation of sound in the nmaterial of the shells
The coefficients of system (6) have the following values

(e)

ay = %-g Py 44".'>2 (1 + 3b1)9 ap = 4$'2 (bz + bz,)e_
_. 252 (3 2 € (o a7
a3 = ,v A (4 b'l -+ 2132), | 3,4 = H:4'J: i 4 (202 + 3@5)
a5 = q_'_*'T: - 8.1(:; 10)2 + .Z.h ; 20,‘
= whE 0,0 (b 4 2mg) + w2420 %
a6 = whL 0L, (by + 2 g e
e g ¥ 0 _ 27257 O o}
ay = q+‘(‘ o AT 2 1b2
L9
ag = w2424 ( by + 2,)
) . “ O: Y0 \ , . 2 = o. )
2g = 2% B2 5 (b + 2by) + 270A5 T 1%y
42 4 2 2
g0 =1+, ('1'4%:‘,"25 43¢ (5 1°)%(2v, + 3v3),
e ¥ ) P S0,
¢ _4._'_:4.:_'_2__ ;L 20 row 4a? (4 10)2“;3 2‘(202 +
aq1 =i 1+ poull i :
Mo 7T 3(1 -2

To5) =% WEEA P by s

1 .
a2 =3 N

213 =% =4 a0

Here (9)
Jo_Ffao. fo_ S20 i_E, x-dKB, b o 1.
:1 " ? g 2 ] h .9 ’7 = L2 nL $ 1 ‘;5‘4
2 (1+ 222, BT(1+9aD% Y T(1 -2 T (1+ )

-



q+* w— UPper static critical load.

The dynamic loss of stability of a shell is studied in the
example of a sudden application of a load of constant magnitude.
The calculations for system (6) were carried out on the MN-7
analog computer, with the inclusion of additional unit s of none
linearity. A shsll characterized by the parameter W25 = 1 was
selected as an example,

Figure 1 shows a tvplcal grapn of the dynamic flexure of
a shell.

Let us take note of the follow1ng'character1Su1c peculiarities
of the motion of a shell.

1. The flexures of the loss of stability increase very
slowly in the beginning of motion and basically axially symmetrical
compression of the shell takes place. _At the same time, the
coefficient of dynarics zgﬁnaml Jnostij is equal %o 2. :

2, Beginning at some moment of time, flexures of stability
loss begin to increase vigorously and then change intc nonlinear
oscillations, It JS.Char’G+efiStic that the static connesction of
parameters ¢ 4 and L o is not observed in dynamics.

3. With great f%exures of stability loss, exially symmetric
compression of the shell reaches more than twice the magnitude of
the static value,

4. At the moment that the magnitude of axially symmetric:
compression of the shell declines, a reccnstruction of the wave

surface takes place: the indentations change to bulges and conversely.

A brief and prolonged application of the load was investigated.
In the first case, the load was removed at the moment in time equal
to the psriocd of natural axial symmetrical oscillations of the
shell, By that time, the first meximum of the flexures of stability
loss ¢4 had time to form. After removing the load, the free oscill-
ation of the shell occured with the amplitude of the bending
flexures not exceeding the first maximunm. Therefore, the first
meximum of the bending flexures can be taken in a given case of
loading as determining., Figure 2 shows the dependengg of the
magnitude of the first peak of the bending flexures :, 4 on the
initial deflections of the shell and the magnitude of the loads

We shall agree to call that load safe under which the summary
stresses at any point of the shell do not exceed the flow limit, i
This hypothesis is introduced to explain the qualitative illustration
of the phenomenon since reaching the siresses of the flow limit at
different points is still not dangerous for the shell., We propose
to specify the criteria of safe loads precisely below. ‘

With transverse loads the greatest stress occurs in the
longitudinal crossesections in the middle of the span between the
ribs on the crests or in the troughs of the waves of stability
losso They are equal to



(10)

(7, +u W 245 ) sin LBy + 127

Since the dependence of the flexure parameters on time is
¥nown from the solution to system \6), it is not difficult to find
an illustration of the change of stresses in the process of stability
loss. ‘ »
We shall termlne the value of SafO dynamlv loads, taking the
parameter of permlssable stress equal to €z, * =1 (Tpis takes
rlace, for example, when &.. = 4,000 kg/om%; E = 2010° kg/on®;
R/h = 500)0 T |

" The values of sa*e loads for A = 0.5 are shown in Figure 2
from which it is clear that safe loads depend heavily on the '
initial flexure of the shell,

I+ is characteristic that when ° 1 = 0s1 and 0,01, the
dangerous stresses occured ab the moment when the maximum flexures
of stability loss were formed. With f’1° = 0,001, the stress
from axially symmetric compression exceeded the permissable size
before the flexures of stability loss had time to develop. Since
the problem was solved in the limits of elastici tys the motion of
the shell in this case is no longer desorlbed'by system (6)s - The
values of the safe loads for various n when { 1° = 0001 and
R/h 100 are shown in Figure 3.

It is interesting to note that the least safe 1oad corresponds
t0 a larger number of waves than durlng the loss of stablllty in
statics.

As is known, such a tendency can be defacted in en ana1y31s
of experimental data on dynamic stresses 4, § o

Thus, the least dangerous stress can be assumed to be
calculated for the known order of magnitudes of the initial »
technological irregularities of the -shell. In. the exanple 1nvest1gated,
the safe load proved to be equal to 0.87 (critical in statics)
and the stresses in the middle of the surface of the shell were:
significantly in excess of the critical.




The study of flexures of a shell during prolonged loading
(the time of load activation was approximately equal to five
reriods of the natural axially symmetric oscillations) revealed
the following characterisiic phenomena (Figure 2): if the initial
deviations are sufficiently great, the maximum size of the bending
flexures p*actlcally coincide with the first peak; on the other
hand, if the initial deviations are small, the curve of maximum
flexures differs merkedly from the curve of the first peaks and
has some regions of rapid growth. In this case, it is natural to
take as the safe load that which corresponds to the beginning of
this region. It is necessary to note that during prolonged load

activation, the magnitude of the maximum flexures of stability loss,
beginning with scaue load, prabt.Lca'lly does not depend on tae :mltlal
deviations of the shell,

Besides the sudden apnllcatlon of a constant load, the
effect of a load increasing linearly over time on the shell was
also investigated, In this regard, it was established that the
influence of ineriness of flexures ;[ , can be ignored for low
loading velocities when the stability loss occurs at a moment in
time in a period of natural axially symmetric oscillations of the
shell several times greater. Such loading velocities as these
were also investigeted in the examples in article [ 4_/ where the
ineriness of axially symmetric compression was not considered.

One must not ignore, however, the effect of inertness of
axially symmetric compression au:rlng qulte I‘apld Joadings In
Figure 4, the functions & o (7" ), 7 o (i )s . o () were
presented as curves J,, J1, Jo resPeu't:Lvely.. As is clear, the
funetion [ dlffefs 51gn1flcant1y from the linear, although it
does rnot take inertness into accounte
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